Life and Death of Pop III Stars

Alexander Heger Stan Woosley

Isabelle Baraffe

Overview

- Basics of massive star evolution and nucleosynthesis
- Birth, life, and fate of Pop III stars
- Nucleosynthesis in very massive Pop III stars (100–1000 M_☉)
- Nucleosynthesis in massive Pop III stars (10–100 M_☉)
- Other way to blow up massive stars

Formation

IMF of the First Stars

Predicted to be heavy to very heavy

```
by theory – insufficient cooling due to lack of metal (e.g., Larson 1999)
and by numerical simulations
(Bromm, Coppi, & Larson 1999, 2002;
Abel, Bryan, & Norman 2000, 2002;
Nakamura & Umemura 2001)
with a typical mass scale of ~100 M<sub>☉</sub>
```

→ The first stars may have had a significant very massive population

Ionizing Photon Fluxes

Additional Ingredient

Essentially negligible mass loss in Pop III stars

in contrast:

Eta Carina

- Galactic star / solar+ metallicity
- Extremely high mass loss rate
- Initial mass: 150-200 M_☉ (?)
- Will likely die as much less massive object

Mass Loss in Very Massive Primordial Stars

- Negligible line-driven winds (mass loss ~ metallicity>1/2 – Kudritzki 2002)
- No opacity-driven pulsations (no metals Baraffe, Heger & Woosley 2001)
- Continuum-driven winds @ L~L_{Edd} have to be explored (Owocki, Shaviv, et al.)
- Epsilon mechanism inefficient in metal-free stars below ~1000 M_{\odot}

from pulsational analysis we estimate:

- 120 solar masses: < 0.2 %</p>
- 300 solar masses: < 3.0 %
- 500 solar masses: < 5.0 %</p>
- 1000 solar masses: < 12. %
- during central hydrogen burning
- Red Super Giant pulsations could lead to significant mass loss during helium burning for stars above ~500 M_{\odot}
- Rotationally induced mixing and mass loss?

Nuclear burning stages

Burning stages		20 M _☉ Star		200 M _☉ Star	
Fuel	Main Product	T (10 ⁹ K)	Time (yr)	T (10 ⁹ K)	Time (yr)
Н	He	0.02	10 ⁷	0.1	2×10 ⁶
He	0, C	0.2	10 ⁶	0.3	2×10 ⁵
C	Ne, Mg	0.8	10 ³	1.2	10
Ne	O, Mg	1.5	3	2.5	3×10 ⁻⁶
0	Si, S	2.0	8.0	3.0	2×10 ⁻⁶
Si≜	Fe	3.5	0.02	4.5	3×10 ⁻⁷

Explosive Nucleosynthesis

in supernovae from massive stars

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (s)	Main Reaction
Innermost ejecta	<i>r</i> -process	-	>10 low Y _e	1	(n ,γ), β ⁻
Si, O	⁵⁶ Ni	iron group	>4	0.1	(α,γ)
0	Si, S	CI, Ar, K, Ca	3 - 4	1	¹⁶ O + ¹⁶ O
O, Ne	O, Mg, Ne	Na, Al, P	2 - 3	5	(γ,α) , (α,γ)
		p-process 11B, 19F, 138La,180Ta	2 - 3	5	(γ ,n)
		v-process		5	(v, v'), (v, e⁻)

$lg T_0$ **Pair SNe** 10 Fe = a supernova 9 8 **NeO WD** 1/3 CO WD 6 10 $\lg \rho_0 / \mu_e$

Kippenhahn & Weigert (1990)

Instability Regimes

adiabatic index < 4/3

Compression does not result in sufficient increase in pressure (gradient) to balance higher gravity at lower radius

e⁺/e⁻-Pair Instability

Internal gas energy is converted into e⁺/e⁻ rest mass (hard photons from tail of Planck spectrum)

Photo disintegration

Internal gas energy is used to unbind heavy nuclei into alpha particles and at higher temperature those into free nucleons

Pair-Instability Supernovae

Many studies in literature since more than 3 decades, e.g., Rakavy, Shaviv, & Zinamon (1967)
Bond, Anett, & Carr (1984)
Glatzel, Fricke, & El Eid (1985)
Woosley (1986)

Some recent calculations:

Umeda & Nomoto 2002 Heger & Woosley 2002

Bright Supernovae at the edge of the Universe

- Explosion energy from 4×10⁵¹ up to 10⁵³ erg (~100x that of "normal" supernovae)
- Up to 90 solar masses of radioactive ⁵⁶Ni (~150x that of "normal" supernovae)
- Assuming that 10^{-6} of all baryons go into 250 M $_{\odot}$ stars, at z=20, the event rate could be up to one every 6 sec (for Ω_{Λ} =0.7, Ω_{matter} =0.3, H $_{0}$ =65km/s/Mpc, Ω_{b} =0.02/h 2 =0.047)
- They would last about 10 yr in observer frame (large mass → long intrinsic light curve, high redshift)
- This is ~1000 of such objects per square degree at any time (assuming no extinction)
- They are intrinsically brighter than Type Ia SNe (bolometric)
- Only observable in the near infrared (due to absorption by neutral hydrogen short of 1215Å, redshifted by a factor 1+z)

Problem:

Pair-Instability Supernovae do not reproduce the abundances as observed in very metal poor halo stars!

1.2 foe and 10 foe explosions

(Data from Cayrel et al. 2003, A&A, 416, 1117)

How else can massive stars explode?

$$25M_{\odot} < M < 100M_{\odot}$$
, $M > 250M_{\odot}$

The "Collapsar Engine"

- 1. black hole forms inside the collapsing star
- 2. The infalling matter forms and accretion disk
- 3. The accretion disk releases gravitational energy (up to 42.3% of rest mass for Kerr BH)
- 4. Part of the released energy or winds off the hot disk explode the star

Why don't we see the Pair-SN abundance pattern?

- 1) Have very massive stars really formed? How rarely? (feedback)
- 2) Where to find pure pair-SN ejecta?
 - Where did stars that formed from the 2SN ejecta end up in the present Galaxy?
 - ⇔ Should we really <u>expect</u> to find such halo stars?
 - \leftrightarrow Top-heavy IMF till Z≈10⁻⁴Z_⊙?
- 3) Modification to Pop III star nucleosynthesis?
 - Are 2SNe *the* (only) contribution to UMP stars, Ly_{α} forest, DLAs, ...? Or were there other contributions?
 - large contribution by 2nd generation primordial stars (poster II P4 by Brian O'Shea)

Summary

Due to their unique composition, the birth, life and death of the first stars is very different from later generations:

- Even stars of several 100 solar masses might survive (if rotating slowly, no winds, no pulsational instability)
- They can encounter the pair-instability, but:
 - strong odd-even effect that has not been observed to date
 - No heavy elements beyond iron group produced
 - No r-process, no s-process not directly observed to date
- Strong odd-even abundance pattern in pair-SNe
- No compelling observational evidence for M≥140 M_☉ stars